

INTRODUCTION

Project-based Learning	3
Connecting Science, Technology,	
Engineering, and Math	3
The Need for Interaction and Collaboration	3
The Design Process Mini Poster	4
The Design Process Worksheet	5
The Scientific Method Mini Poster	6
The Scientific Method Worksheet	7
Growing Critical Thinkers	8
The Four Is:	
Inquire, Investigate, Interact, Invent	8
The Need for Journaling	9
The Review Discussions	10
Keeping Things in Perspective!	10
Pacing Units and Lessons	11
Vocabulary and Discussions	11
Teacher and Student Rubrics	11
Challenge Activity	12
Team Management	12
	•••12
	10
Lesson 1—Guided Activity	13
Lessons—Your Turn	13
Final Lesson—The Challenge	13
About leams	13
EL 11ps	14
A Note About Materials	14
Addressing Standards	
Next Generation Science Standards	15
Common Core State Standards	16
Standards Correlations	16
STEM VOCABULARY	17
RUBRICS	
Teacher Rubric for	
Assessing Student Performance	18
Student Rubric for Assessing Performance	19
UNIT I-BOATS AND BARGES	20
Unit Preparation	20
	22
Activity I—Constructing Clay Boats	
Activity 2—Building Barges	30
Activity 5—Creating Foll Kafts	
Activity 4—Challenge: Design Your Own	20
Floating Vessel	

UNIT 2-WORKING WITH SOUND

Unit Preparation40
Unit Introduction
Activity 1—Amplifying Sounds
Activity 2—Making Telephones
Activity 3—Creating a Guitar
Activity 4—Music with Bottles
Activity 5—Challenge:
Design Your Own Sound Device
UNIT 3-SOLUTIONS MIXTURES AND EMULISIONS
Unit Preparation 60
Unit Introduction 62
Activity 1—Working with Solutions
and Mixtures 65
Activity 2—More Mixtures 70
Activity 3—Working with Emulsions 74
Activity 4—Adding to Emulsions 77
Activity 5Challenge
Be a Chemist: Use the Scientific Method 81
Unit Dropagation
Unit Freparation
Unit Introduction
Activity 1—Making Helicopters
Activity 2—Making Parachutes
Activity 3—Making Balloon Rockets
Activity 4—Challenge:
Design a Type of Air Transportation 109
UNIT 5-SIMPLE MACHINES
Unit Preparation111
Unit Introduction113
Activity 1—Working with Levers 120
Activity 2—The Wedge and the
Inclined Plane126
Activity 3—The Wheel and Axle
Activity 4 —The Screw
Activity 5 —The Pulley
Activity 6—Challenge: Build a Machine 136
UNIT 6-CLASSROOM CHEMISTRY
Unit Preparation138
Unit Introduction140
Activity 1—Secret Messages143
Activity 2—Working with Glop
Activity 3—Capillary Action
Activity 4—Challenge: Test It—
Use the Scientific Method 157
Common Core State Standards159
Next Generation Science Standards

BOATS AND BARGES

ARCHIMEDES-SCIENTIST, MATHEMATICIAN, INVENTOR

Archimedes (Are-kim-e-dees) lived in Greece long ago. He solved problems. He figured out why some things float and others sink. His discovery is now called *Archimedes' Principle*. People say he figured it out one day while taking a bath!

TESTING ARCHIMEDES' PRINCIPLE

- 1. Fill a container halfway with water.
- 2. Mark the level of water in the container with a piece of tape.
- 3. Make a ball using one ounce of clay and place it in the water. Does it sink? It should.
- 4. Now, flatten out that ball of clay and try again. It should float and it will take up less space in the water!

How would you explain displacement? Can you illustrate displacement?

AMPLIFYING SOUNDS

Directions: Work in teams of two to demonstrate the fact that when sound is concentrated and focused toward the human ear, it is easier to hear. Some sounds seem louder because other sounds are blocked.

TEAM MATERIALS

- 18" × 12" construction paper or tag board (one per student)
- masking tape
- markers or colored pencils

- paper towel tubes (one per student)
- plastic wrap
- rubber bands
- scissors

MAKE A HEARING AID

- 1. Find a clean, dry paper towel tube and hold the tube against your ear.
- 2. Ask your partner to whisper something into the tube and then to speak in a normal voice into the tube.

- 3. Compare your partner's whisper to his or her normal voice. Describe the difference.
- 4. How well did you hear your partner's voice?
- CLEARLY WITH DIFFICULTY COULDN'T HEAR MODIFY AND TEST THE HEARING AID 1. Fold a piece of plastic wrap around one end of the tube. Make the wrap tight over the opening. Hold the plastic wrap in place by holding the edges down with a tight rubber band. 2. While you hold the tube next to your ear, have your partner tap lightly on the plastic wrap with his or her fingernail or a pencil. Describe the sound you hear. YES YES NO **THINK:** Is the sound clear? NO Is the sound loud? How would you describe it?
 - 3. Why do you think the tube (covered or uncovered) helps you hear some sounds better?

MAKING HELICOPTERS

DESIGN YOUR OWN HELICOPTER

- 1. Think about a helicopter you would like to make. You could make it bigger, smaller, wider, or shorter than the first two you made. Consider one of the following variations, or one of your own:
 - · different lengths or widths for the rotor blades
 - three or four rotor blades instead of two
 - a different body shape
 - · more weights or a different type of weight

2. Draw a pattern and describe your design.

- 3. Build your helicopter.
- 4. Test your helicopter, and make adjustments as needed. Explain the adjustments you made.

SIMPLE MACHINES

Directions: Use with page 114. Look at the pictures of machines we use. Write the number of the simple machine you see from page 114. The first one has been done for you.

©Teacher Created Resources