How to Use This Book 3
NCTM Standards 4
Unit 1
How to Collect, Organize, and Represent Data 5
Practice Collecting and Working with Data 6
Practice Working with Tables and Charts 7
Practice Organizing Data 8
Unit 2
How to Use and Interpret Bar, Circle, and Line Graphs 9
Practice Working with Single Bar Graphs 10
Practice Working with Circle Graphs 11
Practice Working with Line Graphs 12
Unit 3
How to Use and Interpret Pictographs, Histograms, and Special Graphs 13
Practice Working with Pictographs and Histograms 14
Practice Working with Double Bar Graphs 15
Practice Working with Multiple-line Graphs 16
Unit 4
How to Use the Measures of Central Tendency 17
Practice Working with Mode and Median 18
Practice Working with Arithmetic Mean 19
Practice Working with
Mode, Median, and Mean 20
Unit 5
How to Analyze and Interpret Data 21
Practice Using Correlation, Extrapolation, and Interpolation 22
Practice Looking for Trends 23
Practice Applying Data Analysis 24
Unit 6
How to Collect, Organize, Represent, and Interpret Your Data 25
Practice Collecting and Recording Your Own Data 26
Practice Correctly Interpreting Your Own Data 27
Practice Applying the Measures of Central Tendency to Your Data 28
Unit 7
How to Work with Permutations and Combinations 29
Practice Working with Permutations 30
Practice Working with Combinations 31
Practice Working with Simple Probability 32
Unit 8
How to Work with Experimental and Theoretical Probability. 33
Practice with Experimental and Theoretical Probability 34
Practice More with Experimental and Theoretical Probability. 35
Practice Even More with Experimental and Theoretical Probability. 36
Unit 9
How to Work with Probability in Independent, Dependent, and Compound Events 37
Practice Working with Independent Events 38
Practice Working with Dependent Events 39
Practice Working with Compound Events 40
Unit 10 (Making Predictions)
Working with Data to Determine Probability 41
Working with Area to Determine Probability 42
Unit 11 (Recording Outcomes)
Probability with Three Dice 43
Computing Odds in Real-life Situations 44
Unit 12 (Real Life)
Recognizing and Working with Misleading Statistics 45
Answer Key 46 and Combinations

Facts to Know

Permutations

- A permutation is an arrangement of items in a particular order.
- If you change the order of the items, you produce another permutation.

Sample A

Arrange the letters X, Y, and Z as many different ways as you can.
X, Y, Z
Z, X, Y
Y, Z, X
Y, X, Z
X, Z, Y
Z, Y, X

There are six different permutations using those three letters.
The items are the same, but the order is different.

Tree Diagrams

A tree diagram can be used to illustrate all the possible permutations.

Sample B

How many different ways can you arrange a nickel (N), a dime (D), and a penny (P)?

Factorials

- A factorial can be used to determine the number of permutations involved with the order of objects.
- A factorial is identified by an exclamation mark (!). 3 ! is read as "three factorial."

3 ! means $3 \times 2 \times 1$ which equals 6 .

Sample C

How many ways can you arrange 4 coins: quarter, dime, nickel, and penny?
Four coins can be written as 4! (four factorial)

$$
4!=4 \times 3 \times 2 \times 1=24
$$

Four coins can be arranged in order in 24 different ways.

Combinations

- A combination is an arrangement of items where the order does not matter.

In a combination, for example, XYZ is the same as ZYX or YZX.

- The counting principle is used to determine the number of possible combinations.

If one event can happen in A ways and a second event can happen in B ways, both events can happen in A times B ways.

Sample D

You have three shirts (one red, one green, one blue) and two pairs of shorts (one blue and one green). How many different outfit combinations can you wear?
3 (shirts) x 2 (pairs of shorts) $=6$ (different outfits)

Permutations and combinations are very useful in studying probability. They can be used to figure out all the possible things that can happen in a given situation.

```
What is the probability of two heads landing when you flip two coins, a penny
and a nickel, at one time?
Possible outcomes:
penny (head); nickel (head)
penny (tail); nickel (tail)
penny (head); nickel (tail)
penny (tail); nickel (head)
Probability of two heads: }1\mathrm{ in 4 or 1/4
```


Directions: Use the information on page 29 to help you do these problems. List the possible outcomes for each problem. The first one is done for you.

1. What is the probability of a penny landing heads when you flip it?

Possible outcomes: head or tail
Probability of heads: 1 in 2 or 1/2
2. What is the probability of rolling a 4 with one die?

Possible outcomes: \qquad
Probability of rolling a 4 : \qquad
3. What is the probability of rolling a 6 with one die?

Possible outcomes: \qquad
Probability of rolling a 6 : \qquad
4. What is the probability of rolling a 4 or a 6 with one die?

Possible outcomes: \qquad
Probability of rolling a 4 or 6 : \qquad
5. A black cloth bag holds one red marble, one green marble, one blue marble, and one black marble. All are the same size. Without looking into the bag, what is the probability of drawing a black marble from the bag?

Possible outcomes: \qquad
Probability of drawing the black marble:
6. What is the probability of drawing either the black or the blue marble from the bag?

Possible outcomes: \qquad
Probability of drawing the black or blue marble: \qquad
7. What is the probability of drawing a white marble?

Possible outcomes: \qquad
Probability of drawing a white marble:
8. What is the probability of drawing either the black, the green, or the blue marble from the bag?

Possible outcomes: \qquad
Probability of drawing the black, green, or blue marble: \qquad
9. What is the probability of one head and one tail landing when you flip two coins, a penny and a nickel, at the same time?

Possible outcomes: \qquad
Probability of one head and one tail:

